

Efficacy of siliconcontaining agrochemical application for cereals and potatoes

Alexander Fyodorovich Peliy, Leading Specialist of the Competence Center of Apatit JSC

Stages in the study of silicon in plants

Alexander von Humbolt (1769–1859): Detection of silica (SiO_2) in plants.

Sir Humphry Davy (1778–1829): "The silicon-containing epidermis of plants provides protection for plants against insect pests."

"The Elements of Structural Chemistry" (1813).

Justus von Liebig (1803–1873): proved that plants need silicon for complete mineral nutrition like P, K, N. "Organic Chemistry in Its Application to Agriculture and Physiology" (1840). Jöns Jakob Berzelius (1779–1848): identified Si as an element and studied silicon-organic interactions in soil (1842). Dmitry Mendeleev (1834–1907): proposed the use of amorphous silicon dioxide as a silicon fertilizer (1870). Vladimir Vernadsky (1863–1945): "Beyond doubt, no living organism can exist without silicon." "Silicon emerges in the universe as an element of exceptional importance" (1921).

Global silicon fertilizer turnover is 2,800,000 t/year

Si use: soil application, foliar applications and seed treatment.

Natural: diatomites, zeolites, ash (6,000–24,000 RUB/t) Synthetic: liquid glass, aerosil, silica gel, monosilicic acid (40,000–400,000 RUB/t) Waste: granulated slag, silica gels, metallurgical waste (600–4,000 RUB/t)

$$ApaSil \qquad separation$$

$$H_2SiF_{6 (p-p)} + 6OH^{-}_{(p-p)} \rightarrow SiO_2 \times 2H_2O_{(TB)} + 2H_2O + 6F^{-}_{(TB)}$$

Material	Aerosil A-300 (amorphous SiO ₂)	Diatomite (Australia)	Diatomite (Inza deposit)	Zeolite (Khotynets deposit)	Si-Mg	ApaSil agrochemical Apatit JSC
Active silicon, mg/kg	6,170	2,550	2,590	2,730	5,920–6,340	4,560–5,330

Silicon is an anti-stressant for plants

 IMPROVES SEED GERMINATION
 STIMULATES
 IMMUNITY
 ACCELERATES
 PLANT GROWTH
 IMPROVES
 STRESS RESISTANCE
 STIMULATES
 ROOT DEVELOPMENT Silicon (Si) helps plants resist stress:

- drought;
- salinization;
- diseases.

Si increases photosynthetic activity of leaves by enhancing plant metabolism, strengthens stems and increases resistance to drowning. Si strengthens the absorption of nutrient elements and increases the growth rate of plants. Normal
50%

irrigation
50%

irrigation
10%

Photo: Institute of Basic Biological Problems RAS, 2021

Spring rapeseed

ApaSil agrochemical

Agrochemical mainly composed of an amorphous (biologically active) form of silica and water.

One of the products obtained by processing of apatite concentrate following the reaction of neutralization of hydrofluoric acid.

On January 18, 2022, the pesticide and agrochemical (ApaSil) was certified for state registration.

Tests at the All-Russian Research Institute of Phytopathology

In July 2019, the first vegetation trial was set up on wheat and potatoes to determine guidelines for the use of the **ApaSil agrochemical** and its impact on the environment.

Increase in above-ground biomass of wheat was significant. Ears were formed earlier when the optimal dose of **ApaSil agrochemical** was applied.

easing dosages

Increasing dosages

Dosages used:

- dressing: 100, 200, 300, 400, 500 g/t;
- spraying: 100, 200, 300, 400, 500 g/ha.

Meteorological conditions at the Central Experimental Station of D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry (Barybino microdistrict, Moscow region) for 2018-2020.

Soil fertility in trials on winter wheat (Experimental field of the D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry in Barybino microdistrict)

	Humus,		Hydrolytic acidity,	Active forms, mg/kg of soil		
Year	%	рН _{ксі}	mmol (eq)/100 g soil	P ₂ O ₅ *	K ₂ O*	
2018	1.90	4.80	2.41	64	104	
2019	1.28	5.34	-	82	116	

The **soil** is sod-podzolic, heavy loamy, poorly cultivated, on covering clay. Agrochemical properties of soil prior to trials: very low humus content, mean acidic (2018) and slightly acidic (2019) reaction of soil medium; average content of active phosphorus and potassium.

Application of ApaSil agrochemical on winter wheat

No	Trial case	20	19	2020	
No.	Inal case	SiO ₂ , g/ha	Grain yield, t/ha	SiO ₂ , g/ha	Grain yield, t/ha
1	Control (no fertilizer)	-	3.50	-	2.69
2	N ₁₀₀₋₁₁₅ P ₃₀ K ₃₀ S ₂₀ – background	-	4.60	-	5.81
3	Background + ApaSil (50 g/t seed + 25 g/ha at the beginning of stem elongation phase + 25 g/ha at the beginning of heading phase)	31	5.10	18	6.01
4	Background + ApaSil (50 g/t seed + 50 g/ha at the beginning of stem elongation phase + 50 g/ha at the beginning of heading phase)	55	5.20	31	6.32
5	Background + ApaSil (50 g/t seed + 100 g/ha at the beginning of stem elongation phase + 100 g/ha at the beginning of heading phase)	103	5.80	58	6.93
	LSD ₀₅	-	0.60	-	0.40

D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry (Central Experimental Station, Moscow region).

Winter wheat Variety: Moskovskaya 56

Drowning without ApaSil application

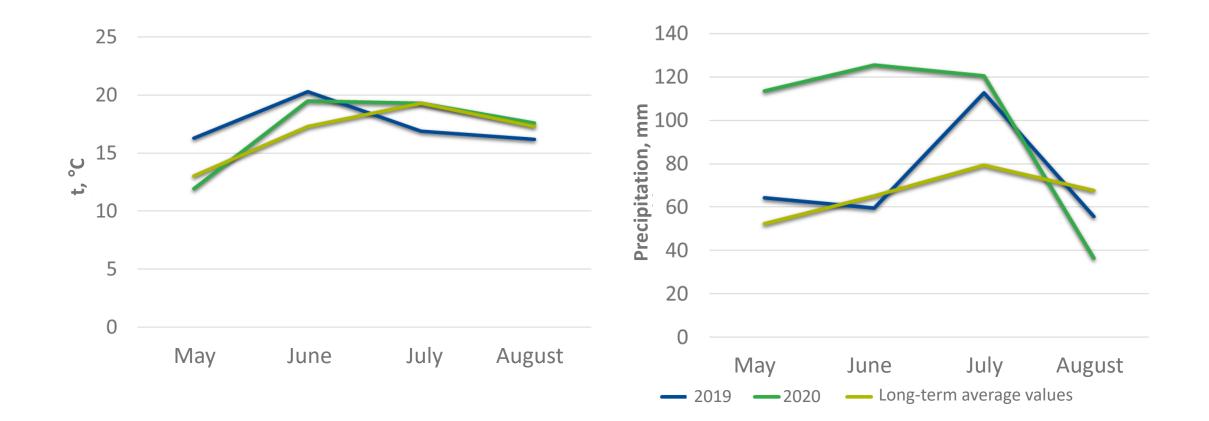
Cost-effectiveness of ApaSil application on winter wheat in 2019 and 2020.

No.	Trial case	Grain yield, t/ha		Yield value, RUB/ha*		Increase in gross revenue to Case 2, RUB/ha	
		2019	2020	2019	2020	2019	2020
1	Control (no fertilizer)	3.51	2.69	38,610	32,280	-	-
2	$N_{100-115}P_{30}K_{30}S_{20}$ – background	4.64	5.81	51,040	69,720	-	-
3	Background + ApaSil (50 g/t seed + 25 g/ha at the beginning of stem elongation phase + 25 g/ha at the beginning of heading phase)	5.14	6.01	56,540	78,130	5,500	8,410
4	Background + ApaSil (50 g/t seed + 50 g/ha at the beginning of stem elongation phase + 50 g/ha at the beginning of heading phase)	5.23	6.32	57,530	75,840	6,490	6,120
5	Background + ApaSil (50 g/t seed + 100 g/ha at the beginning of stem elongation phase + 100 g/ha at the beginning of heading phase)	5.84	6.93	64,240	83,160	13,200	13,440

Note: grain cost in 2019 is 11,000 RUB/t; in 2020. — 12,000 RUB/t (for class 3 grain in Case 3 - 13,000 RUB/t).

> D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry (Central Experimental Station, Moscow region).

Application of ApaSil agrochemical on spring wheat and spring barley in 2020.



$31 \text{ g SiO}_2/100 \text{ g chemical}$

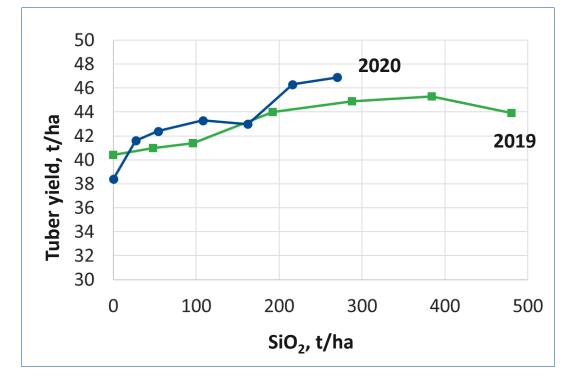
No	Trial case	Spring	wheat	Spring barley		
No.	Indicase	SiO ₂ , g/ha	Grain yield, t/ha	SiO ₂ , g/ha	Grain yield, t/ha	
1	N90P60K90—background	-	6.59	_	6.19	
2	Background + ApaSil (50 g/t seed)	10	6.70	10	6.28	
3	Background + ApaSil (100 g/ha at the beginning of stem elongation phase)	31	6.83	31	6.44	
4	Background + ApaSil (50 g/t seed + 100 g/ha at the beginning of stem elongation phase)	41	7.22	41	7.59	
	LSD ₀₅	_	0.38	_	0.65	

Federal Research Center "Nemchinovka" (Experimental Base, Moscow)

Meteorological conditions at A.G. Lorkh Russian Potato Federal Research Center (Experimental Base, Moscow Region) for 2019-2020.

				Mineral	Active forms, mg/kg soil			
Year	Humus, %	V, %	рН _{ксі}	nitrogen, mg/kg soil	P ₂ O ₅ *	K ₂ O*	S	
2019	1.9	50.7	5.0	35.3	269	128	3.4	
2020	1.9	49.2	4.9	36.7	368	130	3.1	

The **soil** is sod-podzolic sandy loam. The soil showed relatively low humus content (1.9%); mean acidic reaction of the medium (rNKSI = 4.9–5.0); low amount and degree of saturation of absorbed bases (S = 3.1–3.4 mg-eq/100 g soil; V = 49–51%); very high content of active phosphorus (269–368 mg/kg soil) and high content of active potassium (128–130 mg/kg soil).

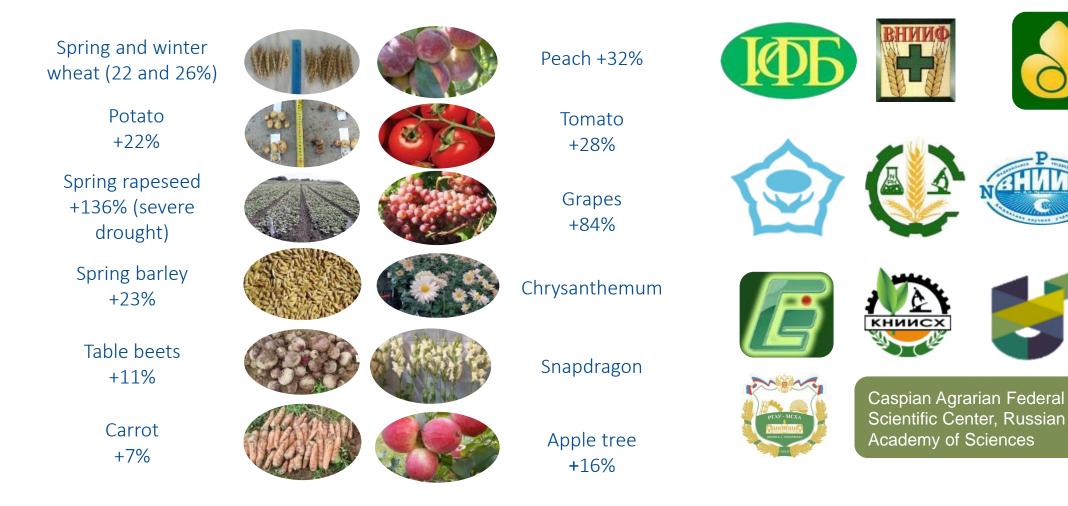

Scheme of potato treatment (for seed purposes) with ApaSil agrochemicals

No.	Trial case	SiO ₂ dos	se, g/ha
	i i ai case	2019	2020
1	Control (no fertilizer)	-	-
2	N ₉₀ P ₉₀ K ₁₃₅ – background	-	-
3	Background + ApaSil 100 g/ha	48	27
4	Background + ApaSil 200 g/ha	96	54
5	Background + ApaSil 400 g/ha	192	108
6	Background + ApaSil 600 g/ha	288	162
7	Background + ApaSil 800 g/ha	384	216
8	Background + ApaSil 1,000 g/ha	480	270

Plants were sprayed at budding and early flowering phases (operating solution flow rate: 300 l/ha)

Total potato tuber yield depending on SiO_2 doses in 2019 and 2020.

Harvesting the nutritionally valuable components of potatoes


No.	Trial case		⁻ yield m, t/ha	Dry matter harvest, t/ha		Starch harvest, t/ha		Vitamin C harvest, kg/ha	
		2019	2020	2019	2020	2019	2020	2019	2020
1	No fertilizer	26.8	28.9	7.1	8.3	5.6	6.7	5.3	6.5
2	$N_{90}P_{90}K_{135}$ – background	38.2	36.3	9.4	9.6	7.2	7.6	6.9	6.3
3	Background + ApaSil 100 g/ha	39.4	39.5	10.0	10.4	7.7	8.1	7.6	7.5
4	Background + ApaSil 200 g/ha	40.2	39.8	9.8	10.6	7.4	8.2	8.2	8.0
5	Background + ApaSil 400 g/ha	42.4	40.7	10.7	10.5	8.2	8.1	7.9	8.1
6	Background + ApaSil 600 g/ha	42.4	40.5	10.3	10.3	7.8	8.1	7.7	7.7
7	Background + ApaSil 800 g/ha	42.7	43.7	11.1	11.1	8.6	8.6	7.9	8.2
8	Background + ApaSil 1,000 g/ha	41.1	43.9	10.6	11.1	8.3	8.7	7.7	8.3
	LSD ₀₅	1.3	-	0.5	-	0.2	-	0.5	-

Cost-effectiveness of ApaSil application on potatoes in 2019 and 2020

No.	Trial case	Tuber yield >30 mm, t/ha		Yield valu	e, RUB/ha	Increase in gross revenue to Case 2, RUB/ha	
		2019	2020	2019	2020	2019	2020
1	Control (no fertilizer)	26.8	28.9	804,000	1,011,500	-	-
2	N ₉₀ P ₉₀ K ₁₃₅ – background	38.2	36.3	1,146,000	1,270,500	-	-
3	Background + ApaSil 100 g/ha	39.4	39.5	1,182,000	1,382,500	36,000	112,000
4	Background + ApaSil 200 g/ha	40.2	39.8	1,206,000	1,393,000	60,000	122,500
5	Background + ApaSil 400 g/ha	42.4	40.7	1,272,000	1,424,500	126,000	154,000
6	Background + ApaSil 600 g/ha	42.4	40.5	1,272,000	1,417,500	126,000	147,000
7	Background + ApaSil 800 g/ha	42.7	43.7	1,281,000	1,529,500	135,000	259,000
8	Background + ApaSil 1,000 g/ha	41.1	43.9	1,233,000	1,536,500	87,000	266,000

Note: cost of seed potatoes: 2019 — 30 thousand RUB/t; 2020. — 35 thousand RUB/t.

Efficiency of ApaSil agrochemical application on crops

Thank you!