

Effective Carbon Sequestration Technologies in Ethiopian Agriculture

Solomon Tulu Tadesse (PhD and Associate Professor)

Jimma University College of Agriculture and Veterinary Medicine (JUCAVM)

www.ju.edu.et

- Introduction
- Effective Carbon Sequestration Technologies
- Carbon Sequestration
- Sustainable land management practices
 - ✓ Organic waste recycling
 - ✓ Organic amendments production and use
 - Biochar (Maize cob, coffee husk)
 - Biochar based composts
 - Bone char (Abyssinian phosphorus)

Jimma University College of Agriculture and Veterinary Medicine (JUCAVM)

- Jimma University was founded in 1999 with the amalgamation:
 - ✓ Jimma College of Agriculture & Jimma Institute of Health Science,
 - ✓ JU is the first innovative community-oriented educational institution & pioneer in public health & agricultural training,
 - ✓ Currently, operating in 4 campuses with 6 colleges and 2 Institutes,
 - ✓ It is one of the 8 research Universities (RU),
 - ✓ First ranked based on 2013 performance among RU.

- **JUCAVM** is established in 1952 as Jimma Agricultural Technical School in collaboration with Oklahoma State University,
 - Committed to advancing Agri development through training, knowledge generation & service delivery,
 - ✓ It is the first agricultural research station of the country,
 - ✓ one of the oldest & historical schools of Agricultural Education,
 - ✓ It is a foundation of Agricultural Education, Research & Extension.

Jimma University: JUCAVM ... Background

Jimma University: JUCAVM ... Background

DEPARTMENTS / SCHOOLS

Jimma University: JUCAVM ... Background

- **Carbon sequestration** is transfer of atmospheric CO₂ into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO₂, one of the green house gases.
- **Carbon farming** is the use of specific on-farm practices designed to take carbon out of the air and store it in soils and plant material.
- **Carbon farming practices** include application of soil amendments like compost or biochar, conservation tillage, agroforestry, whole orchard recycling, cover crops that maximize living roots.

Effective C Sequestration Technologies ... 1. Sustainable land management practices

- Agroforestry and restrained grazing
 - ✓ Had greater stock of soil C compared with traditional management,
 - ✓ Higher C stocks under agroforestry & restrained grazing are explained by higher biomass of perennial vegetation with multilevel canopy & root systems,
 - ✓ Example: Ethiopian Green Legacy.

Effective C Sequestration Technologies ... Afforestation & Reforestation: the Green Legacy

• Ethiopia's Green Legacy is a massive reforestation campaign that was launched by Ethiopian Government in 2019 and done every year.

• Afforestation & Reforestation: the Green Legacy ...

- Ethiopia's Green Legacy Initiative is a commendable effort towards restoring degraded forests, enhancing ecosystem services (Carbon sequestration & Nutrient recycling),
- Thus, promoting sustainable land-use practices.

Effective C Sequestration Technologies ... 2. Organic waste recycling

• Agricultural and urban wastes that make fertilizers, pose great threats to safety & health

Coffee husk

Cow dung

Corn cob

Rise husk

Avocado waste

Animal bone

- These resource can be converted into biochar and biochar-based fertilizer (BBF),
- **Biochar & biochar-based fertilizer** from different organic sources are options for improving soil fertility, restoring degraded land & sequester carbon (C).

Manure recycling between UPA & rural farms for OM buildup and C sequestration

- City centers & urban, peri-urban & rural areas are an asymmetrical, uneven & multidimensional continuum,
- No distinct lines separating city center from peri-urban, urban & rural areas but often a slow zone of change exists,
- Accordingly, three zones (A, B, C) were assigned around city centers.

Fig. 1 Conceptual configuration of the studied cities, with a city centre, & an urban zone (A), a peri-urban zone (B) & a rural zone (C) around the city centre.

Manure recycling ...

• In each zone type, number & size of farms were identified based on data statistics, & farms survey.

Manure N, P and K production per zone (kg) = Number of farms per zone * average TLU per farm * average manure N, P, K per TLU

Table 1. Amounts of N, P & K recycled, & cost of synthetic fertilizers saved via manurerecycling from urban LS farms to C farms in urban, peri-urban & rural areas of AddisAbaba & Jimma. Ranges show uncertainties in amounts of manure recycled.

City	Manure nu Gg yr⁻¹	Fertilize saved, G	Savings, million				
	Ν	Р	K	Urea	DAP	KCI	ETB yr ⁻¹
Addis Ababa	0.5-2.6	0.2-0.8	0.9-3.7	0.7-3.9	1-4	2.3-9.6	75-300
Jimma	0.04-0.22	0.02-0.07	0.07-0.30	0.1-0.3	0.1-0.4	0.2-0.8	6-24

Note: 1000 Ethiopian Birr (ETB) = 30 US\$

 Total N, P and K demands were estimated from crop-specific N, P & K demands (kg ha⁻¹ year⁻¹) per zone, crop type-specific nutrient losses, & surface areas of crops per zone,

Table 2. Number of crop farms and estimated total N, P and K demands by crops grown in the urban (zone A), peri-urban (zone B) and rural areas (zone C) of Addis Ababa and Jimma

Area (Zone)	A	ddis At	baba			Jimma					
	Number of farms	Total demand, Gg year ⁻¹		Number of farms	Number Total demand, of farms Gg year ¹						
		N	Р	K		N	P	K			
Urban (A)	1,097	0.11	0.02	0.10	1417	0.11	0.02	0.09			
Peri-urban (B)	14,435	3.63	0.52	3.11	1770	0.27	0.04	0.23			
Rural (C)	12,199	3.15	0.45	2.70	1018	0.18	0.03	0.15			
Total	27,731	6.89	0.99	5.91	4,205	0.56	0.08	0.48			

Manure recycling ...

Table 3. Amounts of recyclable N, P, & K in manure in Addis Ababa as function of 6 variants

(3 sets of excretion coefficients	* 2 sets of recovery fractions)	
-----------------------------------	---------------------------------	--

Cities	Variant	Excretion rates, kg cow ⁻¹ yr ⁻¹			Recovery fraction, %				Recyclable nutrients, Gg yr ⁻¹		
		Ν	Р	K	Ν	Р	K		Ν	Р	K
Addis	1	25	5	25	0.3	0.6	0.5		0.5	0.2	0.9
Ababa	2	25	5	25	0.5	0.8	0.7		0.9	0.3	1.2
	3	50	10	50	0.3	0.6	0.5		1.1	0.4	1.8
	4	50	10	50	0.5	0.8	0.7		1.8	0.6	2.5
	5	75	15	75	0.3	0.6	0.5		1.6	0.6	2.6
	6	75	15	75	0.5	0.8	0.7		2.6	0.8	3.7

Gg = gigagram = 1 million kg

• Carbon sequestration and soil amendments

- ✓ Soil amendments are products added to soils to improve soil qualities like soil fertility,
- Many of the soil amendments that can improve soil health, also sequester carbon, and these includes:
 - Organic matter compost,
 - Biochar (Corn cob, coffee husk),
 - Biochar based fertilizers,
 - Bone char,
 - Abyssinian fertilizer.

Organic matter compost use for crop production

- Manure accumulation recyclable to urban and rural farms as organic amendments for C sequestration.
 - ✓ Conventional compost production.

Organic matter compost use cont. ...

- Manure & crop residue stored in rural areas for animal feed & manure collection for fertilizing farms for food and feed production that leads to C sequestration.
 - ✓ Conventional compost production.

What is Biochar?

• Biochar is a carbon-rich solid material produced by heating biomass in an oxygen-limited environment.

Effects of biochar

Positive effect

- Sequester stable Carbon
- Increase CEC, retain nutrients,
- Modifies biological properties
- Reduces soil acidity
- Improves plant growth and enhances crop yields
- Reduction of heavy metals (Pb, Cd) bioavailability

Kon-Tiki Kiln

A Low Cost Low Emissions Kiln for Producing Low and High temperature Biochar Mineral Complexes

- Can be made cheaply and can produce a range of different **biochar**
- Above and in ground units
- Easy to fill, start, operate, quench and unload

24

Biochar Application

- Biochar can be directly applied to soil or
- Can be combined with other forms of waste and produce indigenous fertilizers in their back yard

Biochar based fertilizer

Biochar production and use

Biochar based fertilizer production

Global Phosphorus Supply and Scarcity

- P demand estimated to increase 51–86% by 2050 (Mogollon et al. 2018).
- P is a nonrenewable resource with a finite supply.
- Most (73–76%) are mined in China, Morocco, or United States.

This scarcity raises two concerns

- Geopolitical issues that can cause high prices & volatility
 - 135% export tariff on rock phosphate
 - 800% spike in prices
 - Food crises in 47 countries

- 2. Mineable rock phosphate, can be depletedThe life span of remaining rock P
 - (between **70 and 250 years)**
- More certain is that as reserves decrease & demand grows, prices will increase

Options to Mitigate Phosphorus Scarcity

• An alternative & renewable solution to reduce the dependency on RP

Animal bone - huge potential to secure the demand especially in developing countries.

Table 1 | Total phosphorus in annual bone residues from slaughtered animals in Ethiopia.

	Total no. of animals ⁵	Bone mass ⁶ (kg per animal)	% of animals slaughtered (per year)	Bone residues (tonnes per year)	Total phosphorus (tonnes per year)
Cattle	50,283,000	20-30	16-17	160,908-256,447	
Sheep	23,642,000	4-5	19-34	17,968-40,192	-
Goats	22,070,000	4-5	15-30	13,242-33,106	
TOTAL	95,995,000			192,118-329,744	17,279-36,272

Averages of total phosphorus from 2008-2011, average phosphorus concentration in bones of 9-11% (taken from ref. 8).

~100 million animals from 2008 - 2011 in Ethiopia (Simons et al. 2014)

28-56 % of annual P

Field experiments for testing the product

• Biochar and bone char based indigenous fertilizers more than double the farmer yield in on farm trial

Abyssinian Fertilizer

Developing phosphorus fertilizer from bone waste through pyrolysis: Success stories, challenges, and opportunities in Ethiopia

ACP-EU Cooperation Program in Science and Technology II G.C. FED/2013/330-236 A program of the ACP Group of States, with the financial assistance of the European Union

Illustration on the production of Abyssinian phosphorus fertilizer

Triple super phosphate (TSP)

and also with 70% equivalency in available soluble phosphorus content to that of the most expensive commercial fertilizer which is TSP

Chemical composition of the Abyssinia P fertilizer

	1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-93 WWW.THORNTONLAB.COM	32	
			16-Sep-2016
			Page 1 of 1
Report For:	Cornell University		
	306 Tower Rd.		
	918 Bradfield Hall		
	Ithaca, NY 14853		
	Attn: Kelly Hanley		
Sample Identific	ation		
Bone Char Fertil	lizer, Sample #2		
ID: Non-Pelleti	zed Bone Char		
Date Received:	30-Aug-2016		
Laboratory Numbe	er: 397625		
	CERTIFICATE OF ANALYSIS OFFICIAL ANALYSIS *		
Method	CERTIFICATE OF ANALYSIS OFFICIAL ANALYSIS * Parameter	Result	Units
	OFFICIAL ANALYSIS * Parameter		Units
AOAC 958.01	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205)	Result 34.17	Units %
AOAC 958.01	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205)	34.17	Units %
AOAC 958.01 AOAC 977.01,958.	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembate, Water Soluble (P205)		Units %
AOAC 958.01 AOAC 977.01,958.	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Phosphate, Water Soluble (P205)	34.17	Units %
AOAC 958.01 AOAC 977.01,958.	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembers Water Soluble (P205) Calcium (Ca)	34.17 0.17 31.26	Units % %
AOAC 958.01 AOAC 977.01,958.	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembrate, Mater Soluble (P205) Calcium (Ca) Iron (Fe)	34.17 0.17 31.26 0.064	Units
AOAC 958.01 AOAC 977.01,958.	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Dhosphate, Water Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg)	34.17 0.17 31.26 0.064 0.54	Units % %
AOAC 958.01 AOAC 977.01,958.	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembra Mater Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg) Manganese (Mn)	34.17 0.17 31.26 0.064 0.54 0.001	Units 9 9 9 9 9 9 9 9
AOAC 958.01 AOAC 977.01,958. AOAC 2006.03(mod	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Dhosphate, Water Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg)	34.17 0.17 31.26 0.064 0.54	Units % % % %
NOAC 958.01 NOAC 977.01,958. NOAC 2006.03(mod	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembrate, Matar Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg) Manganese (Mn) Sodium (Na)	34.17 0.17 31.26 0.064 0.54 0.001 0.67	Units % % %
AOAC 958.01 AOAC 977.01,958. AOAC 2006.03(mod	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembra Mater Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg) Manganese (Mn)	34.17 0.17 31.26 0.064 0.54 0.001	Units % % % %
Method AOAC 958.01 AOAC 977.01,958. AOAC 2006.03(mod AOAC 955.01 NFSA 1980	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembrate, Matar Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg) Manganese (Mn) Sodium (Na)	34.17 0.17 31.26 0.064 0.54 0.001 0.67	Units % % % %
AOAC 958.01 AOAC 977.01,958. AOAC 2006.03(moo	OFFICIAL ANALYSIS * Parameter Phosphate, Total (P205) Decembrate, Matar Soluble (P205) Calcium (Ca) Iron (Fe) Magnesium, (Mg) Manganese (Mn) Sodium (Na)	34.17 0.17 31.26 0.064 0.54 0.001 0.67	Units % % % %

Ethiopia Looks to Animal Bones to Ensure Food Security (triplepundit.com)

Can Mountains of Animal Bones Boost Food Security in Ethiopia? • Global Voices

Cost comparison bone char fertilizer versus imported alternatives.

	Low Est.	High Est.
Farmgate Price per 100 kg of bone char fertilizer	USD 27.0	5 USD 37.10
Farmgate Price per 100 kg of triple super phosphate (TSP) equiv. ^a	USD 39.4	9 USD 54.16
Farmgate Price per 100 kg of imported TSP ^b	USD 64.4	9 USD 64.49
Farmgate Price per 100 kg of diammonium phosphate (DAP) equiv. ^c	USD 56.8	0 USD 71.48
Farmgate Price per 100 kg of imported DAPd	USD 75.0	0 USD 75.00

Source: Simons et al., 2023; Food policy

Cereal & leguminous crop trials using Abyssinia phosphorus

- Multi-year agronomic trials since 2012
- ~ 20 farmers field trial at Jimma
- 50 farmers at Sidama
- > 15 pot trials

Amount of bone produced at Addis Ababa, Jimma, Adama and Hawassa

- ☺ From four major cities: 35,000 Mt 100,000 Mt/ year
- ③ National production is estimated as: 300,000 Mt/ year

- Amount of phosphorus found in discarded bone in four major cities
- ☺ From four major cities: 4,000 Mt 10,000 Mt P/ year
- ③ National P production from bone is estimated as: 30,000 Mt P/year

Amount in foreign currency saved – four major cities

- ☺ From the four major cities: 30 102 million \$
- Over the set of the

- The use soil amendments that can improve soil health, also sequester carbon.
- However there is low level of recycling (circularity), and carbon sequestration.
- Lack of knowledge, advisory services, & policy incentives & cultural & institutional barriers prevent organic wastes recycling and thus **carbon sequestration**.

- Policy makers should prioritize & define research & policies related to:
 - ✓ Use soil amendments that can improve soil health and **carbon sequestration**.
 - ✓ The recycling (circularity) organic wastes and **carbon sequestration**.
 - ✓ Awareness creation, advisory services, policy incentives, to reduce cultural & institutional barriers, which prevent organic wastes recycling & thus carbon sequestration.

