

Green valorization of biomass residues by solar-driven photoelectrochemical processes

Prof. Antonio Otavio de Toledo Patrocinio Laboratory of Photochemistry and Materials Science Institute of Chemistry – Federal University of Uberlândia, Brazil

otaviopatrocinio@ufu.br

Solar Energy

Data source: German Federal Institute for Geosciences and Natural Resources.

Energy transition and solar fuels

Energy demand for power accounts for less than one-fifth of total final energy consumption

Total Final Energy and Total Modern Renewable Energy Share, by Energy Carrier, 2020

Our main energy carriers are liquid or gaseous fuels We also need renewable feedstocks for the industries

https://www.ren21.net/gsr-2023/modules/energy_demand

H₂ as key energy vector

^{*}Hydrogen produced in facilies designed primarly for other products.

Potential uses for low carbon hydrogen

Total demand for hydrogen in 2020 by application

Planned clean hydrogen annual consumption in announced projects by 2030 by the industrial sector

Source: Fuel Cells and Hydrogen Observatory

Source: Clean Hydrogen Monitor 2022, Hydrogen Europe

How to produce low carbon hydrogen?

Main electrolyzer technologies

Mature technology but with higher production costs compared to natural gas reforming

Direct solar-to-hydrogen production

Photocatalysis (PC)

Energy Environ. Sci., 2013, 6, 1983–2002

Direct solar-to-hydrogen production

Photoelectrochemical cells (PECs)

Energy Environ. Sci., 2013, 6, 1983–2002

Challenges for upscalling

Water oxidation to molecular oxygen is the "bottleneck" for solar-to-hydrogen conversion

 $R-H + H_2O \rightarrow R-OH + H_2 (\Delta G^{\circ} < 0)$

Photoelectroreforming as an alternative for the water splitting

Development of solar-driven photoelectrochemical cells for conversion of biomass residues into clean H₂ fuel and valuable chemicals

Biomass photoelectroreforming: how does it work?

Glycerol as substrate for photoelectroreforming?

It is a byproduct of the transesterification of natural oil to produce biodiesel

Crude glycerol

- ~10 m³ of glycerol is produced for each 100 m³ of biodiesel
- The production is 8 times higher than the current demand
- Purification is not attractive economically
- Storage, transportation and suitable destination is an economic and logistic issue

Long term storage or incorrect disposal can lead to soil and natural water contamination

Glycerol as substrate for photoelectroreforming?

C-C cleavage products

Glycerol is a suitable
Chemical platform to
obtain valuable
organic molecules of
industrial interest

Chem. Soc. Rev. 2014, 43, 765

2020 Green Chemistry for Life research grants

Dr Patrocinio Antonio Otavio de Toledo

Fundacao de Apoio Universitario, Uberlandia, Brazil

for Project: "Green valorisation of biomass residues by solar-driven

photoelectrochemical processes

Synthesis and characterization of semiconducting nanomaterials based on Earth abundant elements

Development of cost-effective strategies for thin film deposition and device assembly

Optimization of the operation parameters aiming at high PEC efficiency and product selectivity

Long term stability tests and upscaling to pilot scale (TRL 7)

Bi₂WO₆ nanoparticles

10 % Glycerol solution; λ > 350 nm (100 mW cm⁻²)

Samples	Conversion	Product selectivity		ξH_2
		Formic acid	DHA	
Bi _{3.84} W _{0.16} O _{6.24} (pH 13)	63±6%	$87 \pm 2\%$	<0.1%	1.2±0.1%
Bi_2WO_6 (pH 9)	$49 \pm 5\%$	$41 \pm 2\%$	0.1%	$1.0 \pm 0.1\%$
$\mathrm{Bi}_{2}\mathrm{WO}_{6}\left(\mathrm{pH}\;0\right)$	$80 \pm 6\%$	99 ± 1%	< 0.1%	$1.4 \pm 0.1\%$

Photochemical & Photobiological Sciences 2022, 21, 1659

Applied Catalysis A **2022**, 646,118867

Nb-doped BiVO₄ photoanodes

Nascimento L.L. submitted

Homogeneous photoanodes through Computer-controlled deposition

Can other residues be used for photoelectroforming?

Bioethanol production in Brazil

For 100 L of ethanol, it is also produced:

- 1000 L of vinasse
- 0,2 L of fuseloil
- 3 L of flegmas (diluted fuseoil)

It consists of an azeotropic mixture between C3-C5 alcohols, mainly isoamyl alcohol, ethanol and water and others trace compounds such as isobutanol, propanol, butanol, furfural.

Flegmass photoelectroreforming

- ✓ Optimal performance at neutral pH
- ✓ High selectivity to formic acid (90%)
- ✓ Performance 5 times better than TiO₂(Standard system)
- ✓ Long term stability thanks to the Nb(V)doping
- ✓ Reduced water use

- Low carbon H₂ production can play a key role on the descarbonization of industrial processes
- Its production costs need to be reduced to efficiently compete with the current production methods (natural gas reforming / coal gasification)
- Direct solar-to-hydrogen conversion can be a suitable method to reduce the costs of low carbon
 H₂
- The use of biomass residues as substrates for H_2 production is an energy efficient pathway that can also lead to the production of valuable organic substrates increasing the economic attractiveness of the process.
- Further R&D is needed to scale-up the photoelectrochemical cells

Acknowledgments

CAPES

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Thank you!