

Enhancing antimalarial drug bioavailability via eutectic synergy with natural excipients

Mónia A. R. Martins

Mountain Research Center – Polytechnic Institute of Bragança

• Malaria is a life-threatening infectious disease, potentially affecting nearly half of the world's population and causing hundreds of thousands of deaths each year

*World malaria report 2024

263 million cases597 000 deaths83 countries

• Malaria is a life-threatening infectious disease, potentially affecting nearly half of the world's population and causing hundreds of thousands of deaths each year

Most of the global malaria burden is concentrated in **sub-Saharan Africa**, where malaria transmission is moderate to high

^{*}World malaria report 2024

• Treatments include common antimalarial drugs, as **artemisinin-based combination therapies** (ACTs)

Global Portfolio of Antimalarial Medicines Translational **Product development** Access Regulatory Approved/ERP March 2024

• Most ACT-related drugs are very **low soluble in water** what compromises bioavailability and therapeutic efficiency

Main challenges in treatment

Low solubility of APIs in water

- The low solubility of APIs in water represents one of the main challenges in the development and commercialization of many drugs
- It is estimated that 40% of marketed drugs and 70-90% of molecules in the research phase have low solubility, which limits their effectiveness

• ... eutectic (1884) «a lower temperature of liquefaction than that given by any other proportion» by Frederick Guthrie, LII. On Eutexia

Properties	Applications
Easy to prepare	Catalysis
Availability of precursors	Organic synthesis
Versatile	Dissolution processes
Economic	Extraction processes
Renewability	Electrochemistry
Biodegradability	Material chemistry
Greener alternative to ionic liquids	

- Mixture of pure compounds for which the $T_{\rm Eutectic}$ is below that of an ideal liquid mixture $T_{\rm Eutectic,\,ideal}$
- Present significant negative deviations from ideality
- The mixture is **liquid** at the operating temperature

Solid-liquid equilibria equation

$$ln(x_i\gamma_i) = \frac{\Delta_m H}{R} \left(\frac{1}{T_m} - \frac{1}{T} \right) + \frac{\Delta_m C_p}{R} \left(\frac{T_m}{T} - ln \frac{T_m}{T} - 1 \right)$$

340 Menthol + Thymol Simple ideal eutectic mixture (-320 $T_{\rm m,thymol}$ Deep eutectic mixture (-) $T_{\rm m,mentho}$ 300 $T_{\rm E.idea}$ × 280 260 240 220 200 0.0 0.6 0.8 0.2 0.4 1.0 X_{thymol}

When the temperature range of the system is not far from the melting temperature of the pure compound

J. Sol. Chem. 48, 962–982 (2019)

Deep Eutectic Solvents

Deviations to thermodynamic ideality

None/Positive: The molecular interactions between the components of the mixture are similar or weaker than those found in the liquid phases of pure substances

 $\gamma \ge 1 \rightarrow$ Eutectic System

Negative: The molecular interactions between the components of the mixture are stronger than those found in the liquid phases of pure substances

 γ < 1 \Rightarrow Deep Eutectic System

J. Sol. Chem. 48, 962–982 (2019)

Deep Eutectic Solvents

~30 min
No stirring
No heating

Strong Interactions

The hydrogen of thymol (a better than usual hydrogen bond donor) interacts favorably with the oxygen of menthol, forming a hydrogen bond that is stronger than any present in the pure liquid components

Resonance structures of thymol

Chem. Comm. 55, 10253-10256 (2019)

How to draw a DES for a specific application?

1. Structural evaluation of the molecules

Identification of families of compounds with suitable properties for the desired application

2. DES selection and preparation

Selection tools (COSMO-RS, Hansen Solubility Parameters), Preparation depends on the hydrophobicity/hydrophilicity of the precursors

- 3. Solid-Liquid Equilibria (SLE) phase diagrams measurement
 Provides information on the range of compositions and
 temperatures for operating these systems
- 4. Fundamental properties evaluation (viscosity, density, solvatochromic parameters, hydrophobicity, TGA, ...)

DES properties can be adjusted by selecting the right combination of precursors, further tailoring their phase behavior and physical properties -> Designer Solvent Character

ACS Sustainable Chem. Eng. 6, 10724-10734

Terpenes + Fatty Acids (2018)

ACS Sustainable Chem. Eng. 6, 8836-8846 (2018)

Evolution of DESs over time and their relationship withpharmaceutical applications

Appl. Sci. 11, 10156 (2021)

DES in the pharmaceutical industry

Int. J. Pharm. 622, 121811 (2022)

Dissolve the API in a eutectic system

Dissolution enhancers of APIs

Use the API as component of the DES

API-based deep eutectic system

Experimental **solubility enhancements** achieved for anti-inflammatory and antifungal APIs using DES as alternative solvents **in comparison with their solubility in water**

Encyclopedia 1, 942–963 (2021)

PhosAgro/UNESCO/IUPAC Partnership in Green Chemistry for Life

Artemisinin bioavailability enhancement through eutectic formation with natural excipients project financed by PhosAgro/UNESCO/IUPAC Partnership in Green Chemistry for Life (Agreement n° 8087).

Objectives

Explore non-conventional green solvents to improve the solubility and, thus, the bioavailability and absorption of antimalarial drugs

Measurement of the **phase behavior** and **physicochemical properties** of the selected mixtures

Extract **antimalarial compounds** from *Artemisia annua L.*

Test the **antimalarial potential** of the extracts using a bioassay

Antimalarial drugs

Streptomyces aureofaciens

$$H_2N$$

O

dapsone

 H_2N
 H_2N

Synthetic antimalarial drugs

Natural Excipients

TERPENES

>55.000 different structures

Majority found only in plants

Derived from isoprene

Complex unsaturated hydrocarbons

Oxygenated functional groups \rightarrow terpenoids

Spices

Fragrances

Flavors

Food

Agriculture

Fine Chemicals

Pharmaceutical

Cosmetics & Perfumery

• COnductor-like Screening MOdel for Realistic Solvents calculates **thermodynamic properties** of fluids and solutions based on **quantum mechanical data**

Melting Points Device

*Solid samples at RT

The solid mixtures are milled (hydrophilic - glove-box) and the resulting powder filled into a capillary

*Paste-like consistency samples

The melting point is determined with a thermocouple connected to a multimeter

DSC

*Monitor the changes of phase transitions

Hydrophilic samples are prepared and sealed inside the glove box

This study investigated drug-excipient mixtures, aiming to address the challenge of low water solubility in many active pharmaceutical ingredients

Enhancing antimalarial drug bioavailability via eutectic synergy with natural excipients

Thank you!