

Modern approaches to calculating diets for ruminants

Yulia A. Guseva,

Doctor of Agricultural Sciences, Associate Professor of the Department of Animal Science, K.I. Scriabin Moscow State Academy of Veterinary Medicine and Biotechnology

Cows on the farm

$\mathsf{FEED} \rightarrow \mathsf{ANALYSIS} \rightarrow \mathsf{DIET} \rightarrow \mathsf{CONTROL}$

Analysis

Precision feeding is based on feed analysis Wet chemistry:

- Time-consuming
- Costly
- Requires hazardous reagents
- Requires trained laboratory personnel

Near-infrared spectroscopy (NIRS)

- Quick
- Relatively inexpensive
- Does not require complex training of laboratory personnel

Dairy One: a partner laboratory

Founded in 1974

International level: more than 40 countries

NIR partner network

$\mathsf{FEED} \to \mathsf{ANALYSIS} \to \mathsf{DIET} \to \mathsf{CONTROL}$

- More than 100,000 samples annually
 - More than 110,000 samples through NIR partners annually
- Full range of wet chemistry tests
- Near-infrared spectroscopy (NIRS)
- Water analysis
- Manure analysis

$\mathsf{FEED} \to \mathsf{ANALYSIS} \to \mathsf{DIET} \to \mathsf{CONTROL}$

NIR

- Near-infrared spectroscopy
- The wavelength of light is associated with various nutrients
 - NIR measures the quantity of reflected light
- NIR uses the range of 1,100–2,500 nm
 - Visible spectrum: 400–700 nm

NIR limitations

- The best method for organic components
- Mineral analysis is challenging (only recognizes hydrated minerals or minerals bound to organic molecules); therefore, analysis of feed and premix mixtures is impossible
- Contaminated samples
- Abnormal samples
- Atypical samples

Analysis

		Wender analysis	s Van Soest analysis				
Water and other liquid substances		Water (moisture)					
	Inorganic matter	Crude ash (CA)					
	Organic matter	Crude protein (XP)					
		Nitrogen-free extracts (NFE)		Non-fiber			
			Sugar, pectins	carbohydrates (NFC)			
Dry matter			Organic residu				
(DM)			Hemicellulose				
			Cellulose			Structural carbohydrates.	
		Crude fiber					
			Lignin	Acid detergent lignin (ADL)	Acid detergent fiber (ADF)	neutral detergent fiber (NDF)	

Diet

Model of animal, pen, farm, and productivity

Animal Inputs <a>Recipe CNCPS 6.5	5> [Lactating Dairy	Cow] Comparisons [1] Op	timizer	P-Size	MixerWa
Number of animals	n	152			
Days in cycle	days	365			
Breed type		Dairy			
Primary breed		Holstein	100%		
Secondary Breed					
Average production/head/year	kg	10500			
Lactation number	n	2,50			
Calving interval	months	13,20			
Age at first calving (AOFC)	months	25,00			
Age (actual average)	months	49,00			
Mean FBW	kg	690,0		SBW kg	662,4
Mature FBW	kg	750,0		SBW kg	720,0
Days since calving (DIM)	days	120,0			
Days pregnant	days	0			
Daily milk production	kg	44,00	liters		42,59
Milk fat	% w/w	3,71	% w/v		3,83
Milk total protein	% ve/ ve	3,22	% w/v		3,33
Milk true protein	9/s w/w	2,99	% w/v		3,09
Casein	% w/w	2,49	96 W/V		2,57
Milk lactose	% w/w	4,87	% w/v		5,03
BCS (1-5)		2,75		BCS	30d 2,75
Target BCS		2,75			
Days to reach target BCS	days	30			
Calf birth weight	kg	41,0			
ADG	kg/day	0,126			

Model of animal, pen, farm, and productivity

Diet evaluation	Pool size	e Rume	n	Synchrony	Excretion	Fatty acids	Amino acids M	inerals	Vitamins	Reserves	Digestibility	Water	
Mean	Details												
Excretion with feces and wet manure					Feces composition								
		Total, kg	*	N, g	P, g	K, g		%			%		%
Dry feces		17.89					Total CHO	55.	36 NDF/dieta	ry NDF	49.57	C8	17.20
Wet feces		104.02		250.38	72.83	133.02	Starch	3.	32 pdNDF/die	etary pdNDF	32.84	Protein	19.28
Urine		51.23		202.82	1.44	234.25	Soluble fiber	0.	61 Starch/die	tary starch	4.05	Lipid	8.81
Wet manure		155.25		453.20	74.27	367.27	NDF	50.	90			Ash	16.55
Consumption				676.38	112.07	430.27	uNDF	25.	58				
Productive				223.18	37.80	56.70	Lignin	9.	51				
Productiv	e N/Total N	33.	0%	Product	tive P/Total P	33.73%	CH4 (Mca	al)	6.18		CO2 (L/day)		8,118.7
Productive	N/N in urin	e 1.10	:1	P in ma	inure/Total P	66.27%	CH4 (L/da	y)	674.8		CO2 (kg/day)		32.18
N in man	ure/Total N	67.0	0%	Product	tive K/Total K	13.18%	CH4 (g/da	iy)	483.74	CO	2 (kg/kg of milk)		0.35
NH3 p	otential	131	.83	K in ma	inure/Total K	85.36%	CP4 (g/kg of	milk)	5.22	CO2 equi	valents (kg/kg o	f milk)	0.74
									💽 СН4				💽 со2
	Currer	nt vield 🔽											

NDS rumen pH	NDS rumen pH Risks of acidosis		fatty acids	в \land 🕨		
Minimum rumen p	н	5.52				
pH <5.8, time (h/da	ау)	4.86	<5.0 h/day			
Surface pH <5.8, pH	H×min/day	87.0				
Acidosis index, pH	<5.8 pH×min/kg PEF	3.41	<6.4 pH×min	/kg PEF		

Projected yield

Milk yield adjusted for fat and protein

Principles of diet calculation

- Calculation by dry matter, taking into account the cost of feed raw materials.
- Providing a sufficient amount of NDF in the diet; control of ADF content.
- Calculation taking into account the crude protein and bypass protein.
- > Calculation taking into account the starch and sugar content.
- Calculation by net energy.
- Balance of Ca, Na, and K by adding individual components (in addition to premix).
- Accounting for the dietary cation-anion balance in dry and dairy cows.

Mature body weight

One of the most important parameters entered into the **NDS professional** system is the **mature body weight**.

Body weight affects various functions

- Projected feed intake
- Feed passage rate
- Nutrient requirement for growth
- Requirements during pregnancy
- Minimum reserve requirement

- Meeting the energy requirement
 - maintenance requirement
 - taking into account the productivity
 - heat exchange
- Meeting the protein requirement

Mature body weight

IMPORTANT! MATURE BODY WEIGHT

The **mature body weight (MBW)** should be measured very carefully, since the nutrition model is based on this important parameter.

The mean mature body weight for a specific farm should be determined once or twice a year. To do so, we measure the live weight of 10–20 cows after 3–4 lactations or older in the middle of lactation (120 to 180 DIM), with a body condition score of about 3 points after milking.

Control. Evaluation of left-over feed on the feed table

Control

Individual feed intake is monitored by determining rumen accumulation.

Body condition score limits at different stages of lactation

0107

Control. Evaluation of feces

Grade 1 Liquid, no visible structure.

Grade 2 Liquid and mushy; leaves splashes when falling on the floor.

A cake is 2–4 cm thick, with rings and a depression in the center. Boot test: **no** footprint; **does not** stick to the sole.

Grade 4

A cake is dense, >4 cm thick, with rings. Boot test: footprint; sticks to the sole.

Grade 3

Grade 5 Solid; resembles horse feces; height 5–10 cm

Control. Cud evaluation

22

Consequences

- Decreased saliva production
- Increased risk of acidosis
- Decreased fat content in milk
- Liquid feces
- Increased risk of displaced abomasum (especially in newlycalved cows)

Parameters

- Productivity corresponding to the lactation phase
- Fat content in milk 3.6–4.4%, protein content in milk 3.2–3.4%
- Milk fat/protein ratio (1.1 : 1–1.4 : 1)
- Urea content in milk (15–30 mg/100 mL)
- Body condition score (BCS)
- No diseases, good reproduction rates

Fat/protein ratio

Limit 1.1 : 1–1.4 : 1

 \checkmark <1.1 : 1 (due to a decrease in fat): suggests acidosis

✓ >1.4 : 1.1 (due to an increase in fat): suggests ketosis

Biochemistry

Reference biochemistry parameters of dairy cows

Parameters	Units	Reference values	
Total protein	g/L	70–92	
Albumins	g/L	25–36	
Globulins	g/L	40–63	
A/G	U	0.4–0.8	
Urea	mmol/L	2.4–7.5	
Creatinine	µmol/L	62–163	
Glucose	mmol/L	2.0–4.8	
Total bilirubin	µmol/L	1.16-8.15	
Triglycerides	mmol/L	0.09–0.37	
Alkaline phosphatase	IU/L	31–163	
Са	mmol/L	2.06-3.16	
Р	mmol/L	1.13–2.91	

Parameters	Range
рН	7.0–8.7
Ketone bodies, mg%	9–10
Ammonia nitrogen, % of total urine nitrogen	0.4–2.5
Urea nitrogen, % of total urine nitrogen	40–72
Amine nitrogen, % of total urine nitrogen	0.5–2.5
Test for: Protein	Negative
Sugar	Negative
Histamine	Negative

$\mathsf{FEED} \rightarrow \mathsf{ANALYSIS} \rightarrow \mathsf{DIET} \rightarrow \mathsf{CONTROL}$

Thank you!

Please email your questions and comments to yuliyguseva@yandex.ru.