

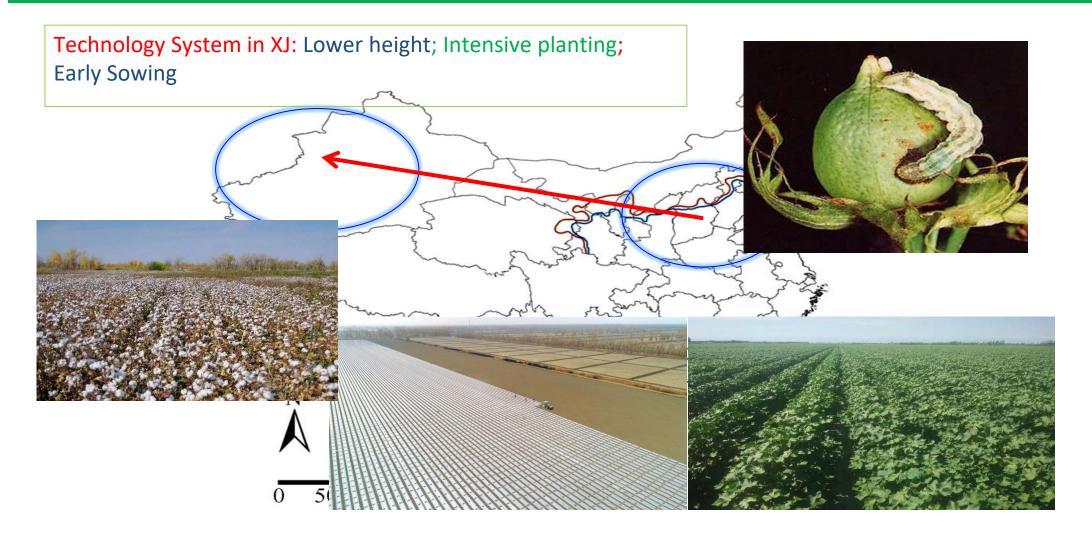
How to Make Policies to Promote Technological Innovations to Address Farmers' Adaptation Needs?

Yinlong XU

Professor, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS)

Interaction of Climate ~ Natural Ecosystem ~ Agri-Food System

Logic Layers of Agricultural Adaptation to CC



Layers	Adaptation Challenges	Tasks
Average trend	Warming, increase /decrease of precipitation; Chronic drought; Elevation of $\rm CO_2$ concentration	Utilization of Climatic Resources
Enhanced Extreme Climatic Events	Flooding; Drought; Hot/Cold temperature; Complex extreme events	Strengthen Disaster Reduction
Ecological consequences	Land degradation, Soil erosion, Desertification, Loss of biodiversity, Outbreak of pest & disease, Reduction of ecosystem service	Exploiting the Ecosystem Services to increase Agricultural Climate Resilience
Social-economic consequences	Policies, plans, livelihood, economic structure, infrastructure	Establishing Social Innovative Mechanism to Guarantee Food Security

National Climate Change Adaptation Strategy 2035 — Average Trend

- Optimize the layout of utilization of Agro-climatic resources
- Precise climatic zoning
- Adjust the cropping pattern & structure
- Raise the multi-cropping index
- Northward shift of crop planting boundaries
- Breed Stress-resistant crop varieties
- Promote geographical indication of China's agricultural products

Utilization of Climatic Resources - Case of Extended Cotton Planting in Xinjiang

National Climate Change Adaptation Strategy 2035 — Disaster Reduction

- Complete the early-warning system according to the new features of agro-meteorological disasters, as well as the diagnosis standard
- Strengthen the material provision
- Develop the adaptive/variable disaster reduction system
- Enhance the application of water-saving technologies

National Climate Change Adaptation Strategy 2035 — Ecological Adaptation

- Strengthening soil and water conservation and ecological protection
- Promoting conservation farming
- Developing agro-forestry and 3-D farming in hilly areas
- Encouraging intercropping
- Adoption of hi-efficiency pesticide & ecological control on pest & disease
- Preventing invasive alien species
- Increasing agro-biodiversity
- Promoting formula fertilization
- Constructing high standard farmland (1.05 billion Mu, 1 Mu=1/15 ha)
- Enhancing germplasm resource protection, building seed banks
- Protecting agricultural heritage
- Optimizing farm landscape design

A Typical Case in China: Rice-Fish-Duck Symbiosis System

Duck & Fish: eat rice hopper, manure as organic fertilizer and ecological measures to control rice disease; control weeds; loosen the soil & increase soil oxygen content

Rice: shading for duck & fish, feeding to duck & fish.....

Benefits: organic food; increase of soil nutrients; biodiversity; high resilience to drought & flooding—stable production.....

Principle: Completing the food security guarantee system

- Adjust the layout of agricultural infrastructure according to changed agro-climatic resources
- Redline of 1.8 billion Mu arable land, creating high-standard farmland
- Promote practice of Climate-Smart Agriculture
- Encourage technical innovation-Adaptation Technology System
- Establish the demonstration bases of adaptation technology
- Innovation on the mechanism of disaster sharing & transfer, e.g., disaster insurance mechanism

Innovation on CSA Tech — Big Data & IoT

10

Effects of Climate-Smart Technology

July, 2017, **hot temperature event** Data Source: Kebai Beijing Ltd

12 March, 2018, **cold temperature event** Data Source: Kebai Beijing Ltd

- Save Water: 50%
- Save Fertilizer: 40%
- Save Pesticide: 35%
- Save Electricity: 50%
- Save Manpower: 95%

Mitigation

- Avoid Heat Damage: 100%
- Avoid Frost Damage: 100%

Thank you!