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Free energy and representative methanogens in methanogenesis reactions

AGTKImol CH, 15573 (X #¢4J Represent

tative methanogens

4H_ + O2 — CH2 +2H,0 -135 Methanothermus, Methanocaldococcus
4HCOOH — CH;— + 30,+ 2H,0 -130 Methanobacterium, Methanothermococcus
40 + 2H,0 — CH,+3CO, -196 Methanothermobacter, Methanosarcina

1. L% 758 42 Methylotrophic pathway
4CH,OH—3CH, + CO, + 2H,0 -105 Methanosarcina, Methanohalobium
CH,OH + H, — CH, + H,O -113 Methanomicrococcus blatticola, Methanosphaera
2(CH;), - S +2H,0 — 3CH, + CO, + 2H,S -49 Methanosalsum, Methanomethylovorans
4CH, - NH, + 2H,0 — 3CH, + CO, + 4NH, -75 Methanococcoides, Methanosarcina
2(CH;), = NH + 2H,0 — 3CH, + CO, + 2NH, -73 Methanococcoides, Methanosarcina
4(CH,;) =N + 6H,0 — 9CH, + 3CO, + 4NH;, -74 Methanosarcina, Methanohalobium
4CH,NH,CI + 2H,0 — 3CH; + CO, + 4NH,CI -74 Methanosalsum, Methanohalophilus

. ZB%i% 4% Aceticlastic pathway
CH,COOH — CH, + CO, -33 Only Methanosarcina and Methanosaeta

Hydrogenotrophic pathway: 4H,+CO, — 2H,0+CH, (30%)

Aceticlastic pathway: CH;COOH— CO,+CH, (70%)

r 4



Methanogenesis . 4
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Methane in rice paddy soil
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Redox ladder 4
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*Standard Gibbs free energy with acetate as an electron donor (kJ per reaction, AG)

According to the law of thermodynamics, electron acceptors with a higher redox potential are reduced
preferentially, thus the iron-reducing bacteria usually outcompeted the methanogens in the microbiome.



Competition between methanogenesis and iron reduction ' 4
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CH,COOH -> CO, + CH,



Iron reduction releases organic carbon that associated with iron oxides ' 4

Fe(lll)
Fe(lll)-NOM
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Acetate degradation and ferrihydrite biomineralization ! 4

4 )

e .
ﬁ@ CH4, CO, (methanogenesis)
Acetate o )
> S SRR = i
FERB =— ' -0 p=> Fe(ll), CO, | (Fe(lll) reduction)

Ferrihydrite

ﬂlron mineralization

Magnetite

) - e-
Acetate T LEES—>E - S —(/ L UELLEIE—) CO, = CH,

Directinterspecies electron transfer

AcMB: acetate utilizing methanogens; FeRB: Fe(lll)-reducing bacteria

J
Zhuang et al., JGR, 2015




Methanogenesis facilitated by electric syntrophy via (semi)conductive O
iron-oxide minerals ' 4

Methane generation and iron oxide reduction at various goethite dosages
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* lron is the component element of several enzymes in the methanogenesis
* The changes of both pH and ORP in cultures after the addition of goethite
might be another reason for the promotion of methanogenesis

Yao et al., BEJ, 2017



Acetate-CH, emission with and without chloroform v
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Hypotheses

* lron oxides addition reduces CH, emissions by competing for electrons with
methanogenesis, and by adsorbing substrates

* The effects of ferrihydrite and goethite on methanogenesis are different owing to
crystallinity, specific surface area, and conductivity

 Strong reduction in microbial biomass (e.g., by fumigation) changes the
contribution of CH, sources and alters the effects of iron oxides on CH,

production




Materials and methods ' 4

Treatments

o 13C-acetate

* No acetate

* Goethite
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* Noiron oxides
e Chloroform Fumigation
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Results. Effect of iron oxides " 4
Unfumigated soil Total CH, emission
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* Iron addition with and without acetate decreased CH, emission.
* Without acetate, the reduction effect of ferrihydrite was stronger than goethite.
* With acetate, ferrihydrite and goethite showed no difference.
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Unfumigated soil Acetate-CH, emission
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* Most Acetate-CH, was emitted in the first 10 days.
* Ferrihydrite and goethite equally reduced acetate-CH, emission.
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Unfumigated soil SOC-CH, emission
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* Acetate-CH, emission was larger than SOC-CH,.
* Acetate-CH, reduction (mg kg-1) by ferrihydrite and goethite was larger than SOC-CH, reduction.



Unfumigated soil Acetate-CH, proportion in total CH, emission

=
o
(@)

—~— Acetate
—4— Ferrihydrite+Acetate
—o— Goethite+Acetate

Cumulative CH, emission
from acetate (% of total CH,)
(o)} ~ o0} (o}
o o o o

(o)
o

0 25 50 75 100
Incubation time (day)

* The proportion of acetate-CH, in total CH, emission was high in the early stage. This proportion decreased
gradually and SOC-CH, dominated.

* On 100 day, the acetate-CH, proportion was smaller in Fh+Acetate and Goe+Acetate than Acetate.



Unfumigated soil CH4 priming effect
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Unfumigated soil Lable C pool size (%) and mean residue time (MRT)
for CH, emission from SOC and acetate

y=b(1-exp(-kx))

T

Treatment

C pool size (%) MRT (day) C pool size (%) MIRT

(day)

09b 113.2 b 33.8a 6.8b

Fh+Ace 1.0 ab 1204 b 30.7b 7.4 a
Goe+Ace 1.3 a 185.9 a 309b 7.5a

Ferrihydrite and goethite reduced labile pool size of acetate and
increased MRT for CH, emission



Effect of microbial biomass change
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* Acetate addition increased CH, emission in both unfumigated and fumigated soils.
* The absolute increase (mg kg-1) was much smaller in fumigated soil.
* The relative ratio of the increase was larger in fumigated soil.



Fumigated soil Acetate-CH, emission
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* Fumigation reduced acetate-CH, emission.
 Dislike unfumigated soil, the acetate-CH, emission rate gradually increased in Ace.



Fumigated soil SOC-CH, emission
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* Fumigation reduced SOC-CH, emission.

¢ SOC-CH, emission rate gradually increased in Ace.
* The acetate-CH, emission was much smaller than SOC-CH, emission.



Fumigated soil Acetate-CH, proportion in total CH, emission

(a) Unfumigated (b) Fumigated
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* The acetate-CH4 emission was much smaller than SOC-CH, emission in
fumigated soil. The acetate-CH, proportion was only <2% of total CH4 emission.




Fumigated soil

Cumulative PE
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In fumigated soil Fh and Goe addition with and without acetate and sole acetate

addition caused greater positive priming effect than unfumigated soil.



Fumigated soil Iron oxides effect
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Fumigated soil Lable C pool size (%) and mean residue time (MRT)
for CH, emission from SOC and acetate

- soc | lAeme |
Treatment

C pool size (%) MRT (day) C pool size (%) MRT (day)
Ace 0.9b 113.2 b 33.8a 6.8 b
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* Fumigation largely reduced pool size and increased MRT of both SOC and acetate.



C sources of CH, emissions in anaerobic paddy soil depending on microbial O
biomass C levels and its response to iron oxides addition
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Conclusions 4

* Microbial biomass reduction largely influences the sources and pathways of methanogenesis.

* Acetate-derived CH, accounted for a major proportion of total CH, emissions. The strong
decrease in microbial biomass caused by CHCl;-fumigation decreased this proportion.

* In soil without acetate, ferrihydrite has a larger surface area than goethite, resulting in a stronger
reduction effect on CH, emissions.

* In soil with acetate, ferrihydrite had the same effect on acetate-sourced CH4 emissions as
goethite, and had a weaker effect on SOC-CH, emissions. This was mainly because the high
affinity between acetate and ferrihydrite.

* The relative effects of iron oxides were higher in the fumigated soil than the unfumigated soil,
indicating that iron reduction became more competitive with methanogenesis for electrons after

fumigation.
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