

'Regulatory Gate' of soil organic matter mineralization in paddy soil

Tida GE

Researcher, Institute of Plant Virology, Ningbo University, China

Contents

-

- Introduction
- Materials and methods
- Results and discussion
- Conclusion

Soil organic carbon turnover

Soil continuum model

Chloroform fumigated soil

- Only 10% microbial biomass survives
- Microbial community is simple

Unfumigated soil

- Microbial biomass is large
- Microbial community is complex

Paradox!

Why the mineralization rates of soil organic carbon are same when soils have such big differences in microbial biomass and community?

Fig. 7. Diagrammatic representation of the Regulatory Gate. KI is the abiological transformation of non-bioavailable soil organic matter. K2 is the biological mineralization of bioavailable soil organic matter. Arrows indicate that microbial biomass may create both non-bioavailable and bioavailable organic matter, but is not able to influence directly the rate of K1.

S.J. Kemmitt et al. / Soil Biology & Biochemistry 40 (2008) 61-73

Organic matter mineralization

Kemmitte et al., 2008

Paddy soil

- Total area of paddy soil globally is 170 million ha
- There is 33 million ha of paddy soil, 60% of which is in the South

Artificial wetland

Ecological function of C sequestration

Paddy soil in China

Piao et al. (2009); Guo and Lin (2001); Tian et al. (2015); FAO (2017)

UplandPadayImage: Descent rest and the second rest and the seco

Soil organic matter content (g kg⁻¹) in China

Region	Upland soil	Paddy soil	±%
Northeast Plains	44.5 (18436)	49.6 (21)	11.5
Huang-huai-hai Plains	9.9 (422)	12.7 (60)	28.3
The middle and lower reagions of Yangtzi River	17.4 (320)	27.4 (26 523)	57.5
Red soil hill regions	16.5 (786)	25.2 (2239)	52.7
Zhu-jiang Delta Plains	20.1 (19)	27.3 (486)	35.8

C stock of paddy soil is higher than upland by 12–58%

•

• Oxidation rate of organic C under aerobic is much faster than anaerobic condition

Keiluweit et al., 2017

Yan et al. (2011)

Oxygen status and C oxidation

Enzyme latch vs Iron gate

Wang et al. (2017)

- Soil mineral
- Water table and duration

Paddy soil

Hypotheses

- Soil oxygen availability determines the rate-limiting factors involved in SOC mineralisation
- SOC bioavailability is the rate-limiting factor under oxygen-abundant conditions, while microbial biomass size is the rate limiting factor under oxygen-limited conditions
- Fe influences SOC mineralisation by acting as an adsorbent and electron acceptor as well as a regulator of hydrolase and oxidative activities

Treatments

Soil properties

Soil	Clay %	Silt %	Sand %	рН	Total Fe (Fe ₂ O ₃) g kg ⁻¹	SOC g kg ⁻¹	Total N g kg ⁻¹	Total P g kg ⁻¹	Available N mg kg-1	Olsen P mg kg ⁻¹
High Fe	4.8 (0.02)	76.3 (0.08)	18.9 (0.06)	5.1 (0.01)	55.8 (0.68)	27.8 (0.23)	2.2 (0.00)	0.8 (0.00)	216.4 (3.76)	21.1 (0.31)
Medium Fe	6.2 (0.01)	65.7 (0.10)	28.1 (0.10)	4.7 (0.02)	25.8 (2.10)	32.8 (0.18)	2.4 (0.00)	0.6 (0.00)	173.7 (0.00)	20.9 (0.94)
Low Fe	9.8 (0.06)	71.1 (0.25)	19.1 (0.31)	5.3 (0.02)	13.7 (0.21)	21.3 (0.04)	1.6 (0.01)	0.4 (0.00)	137.5 (0.84)	8.2 (0.23)

Incubation

Sample analysis

Results

SOC mineralisation under different oxygen conditions

Results

Ratio of F/UF on 76d

Soil	DOC				МВС			
	NF	CF	AF		NF	CF	AF	
High Fe	2.09 (0.01)	1.36 (0.06)	1.09 (0.04)		0.26 (0.29)	0.19 (0.35)	0.05 (4.86)	
Medium Fe	2.33 (0.04)	1.42 (0.04)	1.37 (0.08)		0.18 (0.98)	0.24 (0.85)	0.10 (1.11)	
Low Fe	3.06 (0.02)	3.72 (0.03)	1.83 (0.04)		0.12 (0.55)	0.10 (0.43)	0.04 (8.25)	
 Final resp F/UF≈ 1 	iration rate (3	0d)						
Aerobic (NF, 4 • Final resp F/UF=68-80% • MBC F/UF=3-33% • DOC F>UF	CF) iration rate (7 %	'6d)	Anae • F F/UF • N F/UF • C F>UI	erok inal =34 //BC =3- DOC	oic l respiration r 1–60% C -10%	ate (76d)		

• Results suggest that microbial biomass acts as a rate-limiting factor in SOC mineralisation when oxygen is limited

- CH₄ was almost 1/3 of CO₂ production in anaerobic incubation
- Methanogenesis was largely killed and hardly recoverable

Labile C pool size and mean residence time (MRT)

SOC mineralization=b (1 - e^{-kt}) b is labile C pool size MRT=1/k

The labile C pool size was smaller in the anaerobically flooded treatment than in the other treatments. This implies that organic C may be more recalcitrant under oxygen-depleted conditions.

Treatment		NF	CF	AF	NF	CF	AF	
	Soil	Pool size	e (% of SOC	2)	MRT (day)			
Un-fumigated	High Fe	3.0b	4.3a	3.4b	26.9b	102.0a	31.7b	
	Medium Fe	2.2b	8.1a	2.5b	37.4b	261.5a	26.3b	
	Low Fe	18.3	-	1.1	457.8	-	25	
Fumigated	High Fe	3.4a	3.3a#	1.2b#	37.6a#	32.1b#	18.8c#	
	Medium Fe	2.9a#	2.0b#	1.2c#	29.1a#	23.0b#	16.5c#	
	Low Fe	5.4a#	4.5b	1.4c#	24.1a#	13.2b	9.4b#	

Pearson correlation

(a) Nonflooded (NF) n=12

k				
	Δ Emission			**
	-0.189	ΔEh		
	-0.381	-0.422	∆Fe ²⁺	
	-0.830	0.475	0.038	ΔDOC

(c) CF n=24

ΔEmission	**	*	**
-0.786	ΔEh	*	**
0.454	-0.458	∆Fe ²⁺	*
-0.662	0.579	-0.515	ΔDOC

(b) Flooded (NF) n=12								
ΔEmission	**				1.0			
-0.958	ΔEh				0.8			
0.340	-0.376	ΔFe ²⁺			0.6			
-0.422	0.465	-0.207	ΔDOC		0.2			
(d) AF n=	-18				- 0			
∆Emission	*	**			-0.2			
-0.473	ΔEh	**			-0.4			
0.816	-0.630	∆Fe ²⁺			-0.6			
0.071	-0.122	-0.020			-1.0			

 ΔEh , ΔFe^{2+} , and ΔDOC (Δ: change between sampling dates) ΔEmission, C emission between sampling dates • *p<0.05, **p<0.01

- Nonflooded period of NF, ΔDOC is correlated with C emission
- Flooded period of NF, CF
- and AF, Δ Eh, Δ Fe²⁺ are correlated with C emission

-0.8

Multiple regression for Δ Emission with variables of Δ Eh, Δ Fe²+, and Δ DOC

Treatment	Variable	Standardised Coefficient	P of coefficients	R ² of the regression	P of the regression
	ΔEh mV	0.087	0.674	0.816	0.003
Nonflooded (NF) n = 12	$\Delta Fe^{2+}g kg^{-1}$	-0.312	0.113		
	ΔDOC mg kg ⁻¹	-0.859	0.001		
	ΔEh mV	-0.980	<0.001	0.919	<0.001
Flooded (NF) n = 12	$\Delta Fe^{2+}g kg^{-1}$	-0.023	0.838		
	ΔDOC mg kg ⁻¹	0.029	0.807		
	ΔEh mV	-3.788	0.001	0.683	<0.001
CF n = 24	$\Delta Fe^{2+}g kg^{-1}$	0.154	0.879		
	∆DOC mg kg ⁻¹	-1.836	0.081		
	ΔEh mV	-0.055	0.793	0.649	0.002
AF n = 18	$\Delta Fe^{2+}g kg^{-1}$	0.764	0.002		
	∆DOC mg kg ⁻¹	-0.087	0.599		

Nominal oxidation state of carbon (NOSC) and Iron reduction are important under anoxic condition

Nominal oxidation state of carbon (NOSC)

Keiluweit et al., 2017; Li et al., 2011; Yi et al., 2012

- The multiple regression and correlation suggest that the bioavailability of organic C regulates SOC mineralisation under oxygen abundant conditions but not under oxygen-limited conditions
- The redox potential, the electron acceptor of Fe and organic carbon composition form play significant roles during anaerobic SOC mineralisation

Relationship between Fe²⁺ and DOC concentration and change in soil suspension Changes over time Δ **Concentration** 35 0.4 UnFumigated y = 0.2648x - 0.026630 Fumigation increased Fe²⁺ • 0.3 $R^2 = 0.4131$ 25 0.2 ... $Fe^{2+}mg/l$ ∆Fe2+ mg/l/d 20 0.1 • 15 -0.5 --0.1 -1 0.5 1.5 1 10 -0.2 5 -0.3 0 200 300 400 500 100 DOC mg/l -0.4 _5 J • -0.5 • Unfumigated • Fumigated ∆DOC mg/l/d

Pearson's correlation between soil DOC content and other parameters in soil

Total F			DCB		Oxalate			Pyrophosphate			NUL +	
	Iotal re HCI		AI	Fe	Mn	AI	Fe	Mn	AI	Fe	Mn	NH4
DOC	.761**	.802**	.707*	.723**	.737**	.739**	.769**	.750**	.671*	.799**	.757**	.855**

The role of Fe

Principal component analysis (PCA) of the Eh, pH, MBC, Fe^{2+} and DOC contents, β -1,4-glucosidase (BG), β -1,4-N-acetylglucosaminidase (NAG) and potential oxidative activities

The role of Fe

Linear regression of potential oxidative activity and soil Fe²⁺ content

- Total, crystalline, amorphous, and complexed Fe contents were correlated with DOC contents, which implies that Fe plays a role in preserving the labile organic C pool
- A significant linear relationship between Fe²⁺ contents and oxidative activity indicates that Fe also plays a role in regulating enzyme activity

Conclusions

- The mechanisms of SOC mineralisation in paddy soil vary depending on aerobic and anaerobic dynamics
- The so called 'Regulatory Gate' hypothesis (i.e. SOC mineralisation is solely regulated by abiotic factors) could only be applied to nonflooded conditions
- In oxygen-limited flooded paddy soil, the recalcitrance of organic C substrates, microbial biomass size, and electron acceptors are regulatory factors

Acknowledgements

Institute of Subtropical Agriculture Chinese Academy of Sciences Wenxue Wei; Hongzhao Yuan University of Göttingen Yakov Kuzyakov

Rothamsted Station Phil Brookes

NSFC

The University of Western Australia Anthony G. O'Donnell National Natural Science Foundation of China (NSFC)

Thank you!