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Soil organic carbon " 4
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Soil organic carbon
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Soil organic carbon " 4

NATURE CLIMATE CHANGE por: 10.1038/NCLIMATE2580
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Role of iron in SOC protection

Distribution of
photosynthesized
assimilated carbon in soil
with distribution of Fe
(HRTEM-EDS analysis)




Relationship between SOC stock and turnover with crystallinity O
of Fe oxides ' 4

Soil organic C (kg m=2)

\ 4

Formation i % " Disruption

Total Organic Carbon

A "C of SOM (%)

500

)

@y
EE
§§ 250 Poorly Crystalline Fe & Al Phases
S
E
0
01
s00 Crystalline Fe & Al Phases
cquE
o 18
£ time "
& ©
o2
E

Torn et al., Nature, 1997; Arredondo et al., GCA, 2019

o

1 0 100 1000 5000
Substrate age (kyr)

o



CO;7 Emitted

CO Emitted

Fe (hydr) oxide

Glucose Added Associated Glucose

Porras et al., Science of
Total Environment, 2018




Upland

Paddy

Soil organic matter content (gkg!) in China

Region Upland soil Paddy soil +%
Northeast Plains 44.5 (18436) 49.6 (21) 11.5
Huang-huai-hai Plains 9.9 (422) 12.7 (60) 28.3
The middle and lower reagions of Yangtzi River 17.4 (320) 274 (26523) 57.5
Red soil hill regions 16.5 (786) 25.2 (2239) 52.7
Zhu-jiang Delta Plains 20.1 (19) 27.3 (486) 35.8

Yan et al. (2011)

C stock of paddy soil is higher than upland by
12-58%

Oxidation rate of organic C under aerobic is much
faster than anaerobic condition
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Keiluweit et al., 2017



Role of iron in organic carbon decomposition ' 4
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Ferrous oxidation produces hydroxyl radical which can decompose soil O

organic carbon " 4
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Role of iron oxides ®
Carbon sequestration vs organic carbon mineralization v
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Under anoxic condition, Iron reduction release organic carbon that O
associated with iron oxides 4
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Enzyme latch vs Iron gate ' 4
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Input labile C under oxic and redox-fluctuating conditions ' 4
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Redox (O,) fluctuations
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Turnover of glucose and acetate coupled to reduction of nitrate,
ferric iron and sulfate and to methanogenesis in anoxic rice field soil
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Hypotheses

* |Iron oxides act as electron acceptors and increase the mineralisation of both
acetate and SOC

* The reduction of microbial biomass due to fumigation may decrease the effects of
iron oxides reduction and increase the effect of iron oxides adsorption on the
mineralisation rates of acetate and SOC, but with effects differing by crystallinity

of iron oxides




Materials and methods ' 4

Treatments

o 13C-acetate

* No acetate

* Goethite
tallinit
* Ferrihydrite Crystallinity
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e Chloroform Fumigation
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Results ' 4
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* The addition of ferrihydrite and goethite alone increased cumulative CO, emissions in the unfumigated soil
* Inthe unfumigated soil with acetate, goethite addition showed little influence on cumulative CO, emission.
While ferrihydrite addition reduced the cumulative CO, emission
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Acetate-CO, emission
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Iron oxide effect
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In unfumigated soil ' 4

* Goethite addition increased acetate-CO, emissions and decrease SOC-CO,
emissions

* Ferrihydrite addition reduced SOC-CO, emissions and labile C pool of SOC, and
had little effect on acetate-CO, emission

* Acetate caused negative PE. Goethite and ferrihydrite strengthened this PE
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Fumigation effect ' 4
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Allocation of added acetate into the different C pools on day
100 of the incubation (as % of initial acetate)

T e N T O
Acetate 0.12ab 1.99c 36.6b 276¢c
_ Ferrihydrite + Acetate 0.15a 246 a 36.5b 314 a
_ Goethite + Acetate 0.11b 2.29b 39.1a 27.8b
Acetate 0.31ab 1.77 a 26.4a 71.5¢c
_ Ferrihydrite + Acetate 0.20b 1.47 a 17.9c 80.4a
_ Goethite + Acetate 0.442a 0.72b 21.4b 77.4b



In fumigated soil

* Fumigation substantially reduced MBC

* Fumigation reduced CO, emissions and the labile C pool of SOC and acetate

* More acetate was retained as SOC and DOC than the unfumigated soil




In fumigated soil ' 4

Without acetate, iron oxides addition increased cumulative CO, emissions, and
the effect was stronger after soil fumigation

With acetate, ferrihydrite and goethite decreased CO, emission from acetate

More acetate-C was present as SOC with ferrihydrite and goethite addition than
without

Ferrihydrite and goethite caused greater reduction in SOC mineralisation and PE
than in the unfumigated soil

The reduction effects of ferrihydrite on acetate-CO, and SOC-CO, emissions were
stronger than those of goethite
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Conclusions 4

v'In high MBC soil (unfumigated)

* Both ferrihydrite and goethite decreased SOC-CO, in the acetate-treated
unfumigated soil

* Goethite mainly acts as electron acceptors and increases acetate-CO,

* Ferrihydrite causes both iron reduction and acetate adsorption, resulting little
negative effect on acetate-CO,

v'In low MBC soil (fumigation)

* Iron oxides addition decreased SOC-CO, and acetate-CO,, because the dominant
role of iron oxides was to adsorb and limit acetate accessibility to microorganisms
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